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1  Introduction

There is now substantial evidence that extreme wet/dry cli-
mate anomalies at the regional scale are frequently associ-
ated with a meandering, quasi-stationary jet stream that 
directs Rossby wave energy fluxes of a particular configu-
ration; this mechanism is referred to as the circumglobal 
teleconnectivity (CGT) (Ambrizzi et  al. 1995; Branstator 
2002; Ding and Wang 2005). In North America, it has been 
found that amplified, mid-latitude, short-wave patterns often 
accompany wet/dry extremes. For instance, Screen and Sim-
monds (2014) estimated that significantly amplified circula-
tion anomalies within zonal wavenumbers 3–8 were present 
in 40  % of the months that featured extreme precipitation 
episodes. While extreme conditions are often tied to a range 
of wavenumbers, pronounced CGT dynamics frequently 
present with a zonal wavenumber 5 (wave-5) structure 
(Branstator 2002; Ding and Wang 2005; Wang et al. 2010; 
2013a). Moreover, previous studies have identified CGT 
patterns affecting both winter time (Hoskins and Ambrizzi 
1993; Ambrizzi et  al. 1995; Branstator 2002) and summer 
time (Ding et al. 2011; Wang et al. 2010, 2013a; Schubert 
et  al. 2011) precipitation patterns across North America. 
For this study, we specifically target the CGT pattern with 
a focus on the zonal wavenumbers 4, 5 and 6, referred to as 
short-wave patterns throughout this manuscript.

While various studies have identified stationary CGT 
patterns as an important driver of subseasonal climate 
variability and extremes (Schubert et al. 2011, Wang et al. 
2013a, 2014), achieving skillful climate prediction of 
extreme events remains a challenge. In general, medium to 
long-range numerical weather prediction models have diffi-
culty in forecasting the location and intensity of prolonged 
precipitation anomalies. A number of studies (Yuan et  al. 
2011; Sooraj et al. 2012; Saha et al. 2014) have evaluated 
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the skill in precipitation forecasts by the NCEP Climate 
Forecast System Version 2 (CFSv2) model, concluding that 
over the full reforecast period (1982–2010) virtually zero 
skill exists past the 2-week range. Becker et al. (2013) nar-
rowed the scope of the CFSv2 prediction analysis to focus 
on “short-term climate”, which included monthly means 
at extended lead times, and found an increase in the skill 
metrics when considering only extreme precipitation fore-
casts across North America. However, Becker et al. (2013) 
argued that even with the increase in skill metrics, overall 
skill in precipitation forecasts of monthly means remains 
negligible.

To date, the potential skill of CFSv2 in predicting the 
aforementioned linkage between upper-level circulation 
anomalies associated with the CGT pattern and resultant 
precipitation anomalies has not been examined. Previous 
studies tying the large-scale circulations to forecasting per-
sistent surface weather events, such as the wintertime val-
ley temperature inversions in Utah (Gillies et al. 2010) and 
summer afternoon thunderstorm episodes on a subtropical 
island (Wang et al. 2013b), have shown that CFSv2 retains 
a longer prediction window for up to 4 weeks. It is with 
this in mind that the research undertaken and analysis 
reported here considered: (a) CFSv2’s ability to resolve 
the linkage between synoptic-scale planetary waves (i.e. 
short-waves) and corresponding regional precipitation 
anomalies with extended lead times and, (b) applicability 
of (a) towards the improvement of subseasonal forecasts 
of precipitation for different regions and in different times 
of the year.

2 � Data sources

Given this study’s focus on the predictive capabilities 
towards short-wave circulations and regional precipitation, 
we utilized the fields of geopotential height (Z) and precipi-
tation (P) from the following datasets: (a) the NCEP Cli-
mate Forecast System Reforecast (CFSv2) (Saha et  al. 
2014), (b) the National Centers for Environmental Predic-
tion/National Center for Atmospheric Research Global 
Reanalysis (NCEP1) dataset (Kalnay et  al. 1996), and (c) 
daily station-derived gridded precipitation from the Cli-
mate Prediction Center rain gauge analysis (a.k.a. U.S. 
Mexico Precipitation Analysis) (Chen et  al. 2008). Using 
these datasets, we created a running 30-day series of 
200  hPa Z and normalized P from both observations and 
reforecasts over the period 1982–2009. All variables were 
re-gridded onto a 2.5° × 2.5° resolution grid for compari-
son with the NCEP1 dataset. The CFSv2 200  hPa (ZCFS) 
and precipitation rate (PCFS) fields were available every 
5  days and so, 30-day averages representative of each 
month were computed using the initialization date nearest 

to the start of the month. Given the 6-h interval (00, 06, 12, 
18Z) per day, each daily CFS ensemble contained four 
members. Since the full 9-month runs of the CFSv2 refore-
cast only provides data every 5 days, we could only exam-
ine six lead times each month, designated as day zero 
through day 25 (d-0, d-5, d-10, d-15, d-20, and d-251). 
Each lead time was computed from the 28-year records 
with the initialization day designated as d-0. These same 
dates were also used in the observational and  reanalysis 
data, denoted as ZOBS and POBS. While we were aware of 
the available 45-day daily re-forecasts of CFSv2 over the 
period of 1999–2010, our goal of obtaining the empirical 
relationship between the upper-level circulations and 
regional precipitation was better served by analyzing a 
longer time period of data. Additionally, we focused our 
prediction estimates around a 30-day window and catego-
rized the results by month.

3 � Methodology and results

3.1 � Identifying wavenumber linkages with precipitation

Adopting the climate divisions of the continental United 
States (CONUS) defined by the National Climate Assess-
ment (NCA), we divided the CONUS into six regions; 
these are outlined in Fig.  1 and labeled R1–R6. Based 
upon the results of Schubert et al. (2011) and Wang et al. 
(2013a) which identified the upper tropospheric short-wave 
train, we used the 200-hPa Z to perform a regression analy-
sis with precipitation averaged from these six regions. To 

1  For example, forecasts initiated on 6, 11, 16, 21, 26, and 31 May 
were used as d-25, d-20, d-15, d-10, d-5, and d-0 lead times for June; 
5, 10, 15, 20, 25, and 30 June (July) were used as d-25, d-20, d-15, 
d-10, d-5, and d-0 lead times for July (August). Lead time nomencla-
ture is similar to that used in Zuo et al. (2013).

Fig. 1   Six study regions (R1–R6) for the conterminous United 
States. Taken from National Climate Assessment (NCA) and plotted 
on a 2.5°  ×  2.5° grid. (http://www.epa.gov/global-adaptation/iclus/
nca_regions.html)

http://www.epa.gov/global-adaptation/iclus/nca_regions.html
http://www.epa.gov/global-adaptation/iclus/nca_regions.html
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begin with, we used d-0 to create a 30-day “baseline” for 
the evaluation of regression between PCFS/ZCFS and POBS/
ZOBS. Later, we used this baseline to evaluate the d-5, d-10, 
d-15, d-20, and d-25 forecasts, each comprising an average 
of 30 days starting from the initial day.

The identification procedure of an effective zonal 
wavenumber in the upper-level circulation follows that 

of Wang et al. (2013a), but utilizes 200-hPa Z instead of 
the 250-hPa streamfunction; this procedure is illustrated 
in the flow chart of Fig. 2, modified from Fig. 3 of Wang 
et al. (2013a). The procedure may seem complicated, but 
is essentially a series of temporal regression and spatial 
correlation analyses applied between the P and Z fields 
and, in this case, extended to both the observational and 

Fig. 2   Flow chart detailing 
procedure used to create and 
compare the spatial correlations 
of regression between Z200 and 
precipitation for CFSv2 and 
observation datasets. Procedure 
produces a spatial correlation of 
regression score for each grid 
point across the 2.5° × 2.5° 
grid CONUS grid. See text for 
details

Apr 

Jan Feb Mar

May Jun 

Jul Aug Sep

Oct Nov Dec 

Fig. 3   Map of monthly spatial correlation of regression scores using d-0 lead times for wave-5 Z200 and precipitation relationships (other wave-
lengths not shown). Figure is the result of the scoring procedure presented in Fig. 2 and discussed in the text
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CFSv2 reforecast data. The essentials comprise the iso-
lation of zonal wavenumbers 1–6 from the 200-hPa ZCFS 
and ZOBS using Fourier series transform. Both PCFS and 
POBS at each individual grid point were normalized based 
upon their standard deviation; this was to eliminate cli-
matological biases in CFSv2, since quantitative precipita-
tion forecast was not our focus here. A series of refore-
cast regression maps were created between PCFS and 
corresponding ZCFS over the Northern Hemisphere. Cor-
responding observed regressions between POBS and ZOBS 
were created as well. Next, for each grid point within 
the CONUS domain, a spatial correlation between the 
reforecast regression map and observed regression map 
was computed; this process was repeated for each month 
based upon the d-0 lead time. The purpose of the analy-
sis was to identify the combinations of region, wavenum-
ber, and month in which the temporal regression pattern 
of PCFS/ZCFS best matched those of POBS/ZOBS. The idea 
is that where and when these patterns were most similar, 
it would be more likely that regional precipitation can be 
successfully linked to the 200-hPa Z  field. The analysis 

outlined by the flow chart of Fig. 2 was then applied to all 
wavenumbers (1–6) in all months. 

In order to gauge the degree of similarity between the 
regression patterns, and also to ensure a normal distribu-
tion, we transformed the correlation values to z scores 
using Fisher’s z transformation. We performed next an 
upper-tailed z-test with α = 0.10 to identify a set of com-
binations in which the null hypothesis that no positive 
correlation pattern between the spatial regression features 
existed could be rejected. Of the 432 possible region, wave-
number, and month combinations, 25 were found to be 
greater than the critical z value of 1.282. Subsequently, we 
compared the magnitude of the linkages between the PCFS/
ZCFS and POBS/ZOBS regression patterns by performing a 
two-tailed F-test in which the null hypothesis stated that the 
variance of the two regression patterns were the same. Only 
combinations in which the F-test indicated insufficient 
evidence to reject the null hypothesis at the α = 0.05 sig-
nificance level (F > 1.9) were retained. Applying the F-test 
led to a reduction of top z-score combinations from 25 to 
19. These objectively obtained combinations, as listed in 
Table 1a, represented when and where the CSSv2 hindcast 
best resolved the linkages between a given wavenumber 
and the corresponding precipitation anomalies in a given 
region.

3.2 � Results of precipitation response to short‑wave 
circulation

To illustrate the outcome of the procedure presented in the 
flow chart, Fig. 3 shows the spatial correlations of wave-5 
at each grid point across the CONUS. One can visually 
identify clusters of high spatial correlation indicating the 
“scores” of temporal regression between P and Z from 
each month (hereafter referred to as scores). Of particular 
note are clusters of high scores across the southern U.S. 
in January and a spatial extent of high scores across vast 
stretches of the CONUS in June, October and November. 
Clusters of negative scores indicate locations of an inverse 
relationship between CFSv2 and observation correlations, 
indicating poor forecast skill or a lack of predictability 
within the short-wave circulation framework. Neverthe-
less, the presence of clustered positive scores shows that, 
at certain wavenumbers, CFSv2 can capture the linkages 
between the upper-level short-wave circulations and the 
regional precipitation responses at certain time/location 
combinations.

The dependence of model performance on month and 
location is likely caused by the unique jet stream position 
and terrain features that affect the stationary short-waves at 
different times of the year, as was discussed in Wang et al. 
(2013a). For instance, the high scores in June over the 

Table 1   (a) List of 19 candidate combinations of region, month, and 
wavenumber. Consists of 10 unique region and month combinations 
tested by Pproxy equation. Where multiple wavenumbers met the cri-
teria set forth in Fig.  5, we performed the proxy analysis using the 
wavenumber with the highest absolute maxima and minima values 
within the regression pattern. (b) same as for (a), only listing the 9 
successful candidate combinations of Pproxy shown in Fig. 5

Region Month Wavenumbers

(a)

 1 Jun 4,5,6

 2 Jun 4,5,6

 2 Nov 4

 3 Jan 4,5

 3 Feb 4,5

 4 Jan 4

 4 Oct 5

 4 Nov 3,4,5

 5 Nov 5

 6 Nov 3,4

(b)

 1 Jun 4

 2 Nov 4

 3 Jan 5

 3 Feb 5

 4 Jan 4

 4 Oct 5

 4 Nov 5

 5 Nov 5

 6 Nov 4
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Midwestern U.S. reflect a key feature of the short-wave/
precipitation connection (Schubert et al. 2011) and, based 
on Fig. 3, this feature is reasonably resolved by CFSv2. A 
potential predictability is also revealed from the relation-
ship between wave-5 pattern and regional precipitation in 
January, October, and November. The months of February, 
April, and September show isolated regions of moderate 
predictability. The months of December, March, May, July, 
and August show the poorest scores in terms of the wave-5 
linkage to precipitation. However, this outcome cannot 
be interpreted as a result of poor model performance, as 
December and March have previously been identified as 
having the weakest correlations of precipitation with the 
short-wave pattern (Wang et  al. 2013a). Additionally, the 
CGT in July often operates on even shorter wavelengths 
(wavenumber 6–8) (Ding and Wang 2005). Some poor per-
formance may also be tied to differences in the initial con-
ditions of the 200-hPa Z in the CFSv2 model and NCEP1 
reanalysis: At the scale of the northern hemisphere mid-
latitude region such differences would be minimal. More 
pronounced errors in the initial conditions exist between 
modeled CFSv2 precipitation rate and the observed CPC 
unified precipitation product. While we acknowledge that 
differences in initial conditions could have some influence, 
we do not quantify them here. Such differences would 
exist when comparing any model to an observational data-
set and is not part of the objectives of this analysis.

Equipped with both the spatial and variance compari-
sons, we present all 432 possible region, wavenumber, and 
month combinations with the Taylor diagrams in Fig.  4. 
Spatial correlation of regression scores, like those in 
Fig. 3, are shown along the radial axis. Ratio of Variance 
(RVAR) values, equivalent to the F-statistic, are displayed 
along the x and y axes. Ideal combinations occur where 
both metrics are equal to 1, or where the red radial line 
touches the x-axis. The objectively identified 19 z-score 
combinations are highlighted by their months for each 
region.

It is important to note that of the 19 combinations, all 
but two fall within our targeted short-wave regime (wave-
numbers 4–6); this is an encouraging finding as such short-
wave circulation patterns exhibit considerable influence on 
downstream precipitation anomalies on the monthly time-
scale. The aforementioned results are supportive of the next 
step, that is, to predict monthly precipitation anomalies 
based on the circulation-based proxy rather than using the 
CFSv2 precipitation output directly.

3.3 � Development of precipitation proxy

In order to provide an assessment of potential predictabil-
ity, we used the 200-hPa Z as the sole predictor independ-
ent of the precipitation output. Using the selected months 

in Fig. 4, we developed a precipitation proxy equation for 
the selected regions. Figure  5 displays eight scenarios of 
the regression patterns between regional precipitation (indi-
cated on top of each panel) and filtered 200-hPa Z waves 
(as noted in the upper right of each panel). From the regres-
sion maps, we chose two sets of Z anomaly cells occurring 
in tandem directly upstream or within one half wavelength 
downstream from the region of interest. These maxima and 
minima locations are indicated by the black boxes on the 
regression maps of Fig. 5. 

While 19 combinations of region, wavenumber, and 
month were identified in Sect.  3.1 to construct the pre-
cipitation proxy, it can be seen from Table  1a that multi-
ple wavenumbers often met the criteria for a given region 
and month. In such cases, we performed the proxy analy-
sis using the wavenumber with the highest absolute max-
ima and minima values within the regression pattern; this 
reduced our 19 candidate combinations to 10 unique pairs 
of target regions and month. Next, we produced the 200-
hPa Z anomalies during each year of 1982–2009. The Z 
anomaly values were extracted from each of the short-wave 
cells outlined by the black boxes in Fig.  5 (i.e., L1,2,3,4) 
and used as predictors for the 30-day mean of observed 
precipitation. The result led to multiple linear regression 
coefficients (C1,2,3,4) for each cell location (L1,2,3,4). The 
combination of the coefficients and 200-hPa Z anomaly 
values, along with the intercept (correction value), derives 
the 30-day precipitation proxy (Pproxy) in the following 
equation:

Using Eq. (1), Pproxy was produced for each of the 10 tar-
geted pairs using all six lead times (d-0, d-5, d-10, d-15, 
d-20, and d-25). To evaluate this precipitation proxy against 
the direct model output of precipitation, we created equiva-
lent time series of regional precipitation estimates directly 
from CFSv2 (PCFS) averaged from the same 10 targeted 
region and months (Table 1a ) at all six lead times. Tempo-
ral correlation scores were then computed between Pproxy 
and PCFS as a measure to determine model performance.

3.4 � Evaluation of the forecast of precipitation proxy

The results of the comparison between Pproxy and PCFS are 
presented in the line graphs of Fig.  5 next to each map. 
Temporal correlation scores are shown on the y-axis while 
lead times (d-0 through d-25) are shown on the x-axis. 
Red lines show correlation scores for Pproxy with blue lines 
showing scores for the direct PCFS forecasts. Correlation 
scores are smoothed using 3-point averages, except at d-0 
and d-25 which are smoothed only by two points. Of the 
10 unique region and month combinations, 9 combinations 
(listed in Table  1b) exhibit significantly and persistently 

(1)Pproxy = L1 ∗ C1 + L2 ∗ C2 + L3 ∗ C3 + L4 ∗ C4 + intercept
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higher correlations in Pproxy than in PCFS. The combinations 
shown in Fig. 5 and listed in Table 1b are those with cor-
relation scores of Pproxy exceeding PCFS at three or more of 
the six lead times. Within the admittedly small sample of 
combinations, over 80  % show that the developed Pproxy 
outperformed PCFS.

These results are encouraging as the methodology pre-
sented in Sect. 3.1 can easily be adjusted to include either 
broader or narrower spatial/temporal scales for further 
improvement. Obviously, the prediction of Pproxy relies 
upon natural circumstance, for if no anomalous short-wave 
circulations develop in a given month, then there would 
be no useful skill gained by the Pproxy method. Thus, the 
operational potential of this approach exists only as a fore-
cast of opportunity, relying on the formation and stagna-
tion of these type of shortwave features. The regional aver-
age of rainfall (P) as was used in this study also does not 
depict any spatial distribution of the P anomalies. Nonethe-
less, our analysis did identify which months and regions 
are most likely to benefit from successful predictions of 
upper-level circulation anomalies by CFSv2. The results 
of this method provide a realization for the implications 

learnt from previous research such as those of Schubert 
et al. (2011), Wang et al. (2013a, 2014) in that the linkage 
between standing Rossby short-waves and local precipita-
tion can provide predictability at long lead times.

4 � Concluding remarks

We explored the subseasonal predictive capabilities of 
CFSv2 towards resolving the relationship between short-
wave circulation patterns and regional precipitation anoma-
lies as previously documented in the literature. By explor-
ing the optimal combinations amongst zonal wavenumber, 
region, and month, we developed a precipitation proxy (as 
a function of the short-wave circulation) and evaluated it 
against the forecast of direct precipitation model output. 
Results were variable both spatially and temporally, with 
the highest forecast skill/score coinciding with the stronger 
signals in the short-wave circulations. The forecast perfor-
mances were associated with the variability in jet locations 
and stationary wave patterns among individual months. 
Depending on the region and month of the year, it can be 

Fig. 4   d-0 Taylor diagram plots for region R1–R6. X–Y axis shows 
RVAR values while radial axis shows spatial correlation score. All 
month and wavenumber (1–6) combinations are shown for each 

region. Selected months are identified through the combination of an 
upper-tailed Z test and an F-test for difference in variance as outlined 
in Sect. 3.1 of the text
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concluded that, over CONUS, there is a potential for sub-
seasonal (week 3–4) precipitation forecasts if one considers 
the short-wave circulation features as the proxy of regional 
precipitation anomalies.

Why would a simple statistical approach outperform the 
model precipitation output so much? It could be argued that 
the parameters used in the present method are forced by the 
choices of using a narrow region and/or a narrow period 
such that it would be sensitive to the reanalysis product or 
CFSv2. However, this is precisely the point of our focus 
on the usage of short-wave circulations, since such circu-
lation regimes produce narrow, region-specific impacts on 
precipitation variations. The fact that the proposed method 
appears to obtain generally higher skill scores than the 

direct model output of precipitation (in certain regions/
months) speaks to the value and feasibility in combining a 
dynamical prediction (CFSv2 Z field) with a statistical one 
(proxy for precipitation). Earlier research has also applied 
a similar hybrid approach in predicting winter temperature 
inversions in narrow mountain valleys (Gillies et al. 2010) 
and island diurnal afternoon thunderstorms (Wang et  al. 
2013b) using CFS model’s large-scale circulation pattern.

The methods of this study can be expanded globally to 
any mid-latitude region. Likewise, the focus region can 
also be narrowed to include any area known to be heav-
ily influenced by the seasonal or subseasonal fluctua-
tions in the jet position. Further exploration is needed to 
migrate this Pproxy method from being potentially useful 

Fig. 5   Nine combinations of the proxy equation determined have 
better temporal correlations between predicted and observed precipi-
tation. The left hand sides are maps of the 1982–2009 regression pat-
terns for wavelength, month, and region combinations as indicated 
above each figure panel. Filled black boxes outline the index locations 

(L1,2,3,4) used in Eq. (1). The right hand sides show both the Pproxy 
and CFSv2 temporal correlation scores. Lines were smoothed using 
3-point averages, except at d-0 and d-25, which are are smoothed 
only by two points
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to operationally feasible. For future work, we propose the 
inclusion of the correlation scores from the various com-
binations (of region, month and wavenumber) as a “skill 
mask” to highlight where and when the subseasonal predic-
tions from CFSv2 (or any multi-model ensemble product) 
can be given higher weight elsewhere. A similar procedure, 
looking at short-wave pattern influences on surface temper-
ature anomalies, will compliment this study in the produc-
tion of a similar temperature proxy.
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